Civil Engineering

191 NE Tari Lane Stevenson, WA 98648 (425) 881-5904

August 20, 2023

City of Mercer Island Public Works Department Kevin Nguyen, PE 9611 SE 36th Street Mercer Island, WA 98040

RE: 2206-227, 4603 89th Ave. SE Post Permit Revision

Dear Mr. Nguyen,

This letter accompanies plans for a post-permit revision. The revision consists of moving the proposed ADU east to attach to the proposed main house and incorporating a swim-spa area west of the ADU. The new ADU location encroaches on the proposed detention pipe location.

The new proposal is to reduce the footprint area of the detention pipe by increasing the diameter from 36 inches to 42 inches. The proposed building height has been reduced by 6 inches to facilitate this. The grades on the driveway outside the garage have been lifted 6 inches.

The proposed 42-inch diameter detention pipe was designed by matching rate control performance to that of a 48-inch diameter pipe designed per Table 1 of City's On-Site Detention Design Requirements document. The required 48-inch diameter pipe was input into a storm event model to determine required release rates. A summary of the performance data is attached. The proposed 42-inch diameter pipe has equivalent rate control performance to the 48-inch diameter pipe. Computer printouts are also attached.

Please call me if you have any questions.

Very Truly Yours,

NICK BOSSOFF ENGINEERING

N. Bunt

Nick Bossoff, P.E. Civil Engineer

	Pipe Data					Flow Performat	nce
Pipe Diameter.	Pipe Length	Low Orifice Dia.	Outlet Invert to Upper Orifice	Upper Orifice Dia.	2-yr Release	10-yr Release	100-yr Release
(in)	(ft)	(in)	(ft)	(in)	(cfs)	(cfs)	(cfs)
42"	65	0.5	2.5	1.5	0.0077	0.0104	0.0331
48"	49	0.5	2.9	1.5	0.0082	0.0109	0.0341

1"-20'

HARD SURFACES

Table 1

ON-SITE DETENTION DESIGN FOR PROJECTS BETWEEN 500 SF AND 9,500 SF NEW PLUS REPLACED IMPERVIOUS SURFACE AREA

New and Replaced		Detenti Lengt	on Pipe th (ft)	Lowest Diamet	Orifice er (in) ⁽³⁾	Distance from to Second	n Outlet Invert Orifice (ft)	Second Diame	Orifice ter (in)
Impervious Surface Area	Detention Pipe								
(sf)	Diameter (in)	B SOIIS	C soils	B SOIIS	C solls	B SOIIS	C soils	B SOIIS	C soils
	36"	30	22	0.5	0.5	2.2	2.0	0.5	0.8
500 to 1,000 sf	48"	18	11	0.5	0.5	3.3	3.2	0.9	0.8
	60"	11	7	0.5	0.5	4.2	3.4	0.5	0.6
	36"	66	43	0.5	0.5	2.2	2.3	0.9	1.4
1,001 to 2,000 sf	48"	34	23	0.5	0.5	3.2	3.3	0.9	1.2
	60"	22	14	0.5	0.5	4.3	3.6	0.9	0.9
	36"	90	66	0.5	0.5	2.2	2.4	0.9	1.9
2,001 to 3,000 sf	48"	48	36	0.5	0.5	3.1	2.8	0.9	1.5
	60"	30	20	0.5	0.5	4.2	3.7	0.9	1.1
	36"	120	78	0.5	0.5	2.4	2.2	1.4	1.6
3,001 to 4,000 sf	48"	62	42	0.5	0.5	2.8	2.9	0.8	1.3
	60"	42	26	0.5	0.5	3.8	3.9	0.9	1.3
	36"	134	91	0.5	0.5	2.8	2.2	1.7	1.5
4,001 to 5,000 sf	48"	73	49	0.5	0.5	3.6	2.9	1.6	1.5
	60"	46	31	0.5	0.5	4.6	3.5	1.6	1.3
	36"	162	109	0.5	0.5	2.7	2.2	1.8	1.6
5,001 to 6,000 sf	48"	90	59	0.5	0.5	3.5	2.9	1.7	1.5
	60"	54	37	0.5	0.5	4.6	3.6	1.6	1.4
	36"	192	128	0.5	0.5	2.7	2.2	1.9	1.8
6,001 to 7,000 sf	48"	102	68	0.5	0.5	3.7	2.9	1.9	1.6
	60"	64	43	0.5	0.5	4.6	3.6	1.8	1.5
	36"	216	146	0.5	0.5	2.8	2.2	2.0	1.9
7,001 to 8,000 sf	48"	119	79	0.5	0.5	3.8	2.9	2.2	1.7
	60"	73	49	0.5	0.5	4.5	3.6	2.0	1.6
(1)	36"	228	155	0.5	0.5	2.8	2.2	2.1	1.9
8,001 to 8,500 sf ⁽¹⁾	48"	124	84	0.5	0.5	3.7	2.9	1.9	1.8
	60"	77	53	0.5	0.5	4.6	3.6	2.0	1.6
	36"	NA (1)	164	0.5	0.5	NA (1)	2.2	NA (1)	1.9
8,501 to 9,000 sf	48"	NA (1)	89	0.5	0.5	NA (1)	2.9	NA (1)	1.9
	60"	NA ⁽¹⁾	55	0.5	0.5	NA ⁽¹⁾	3.6	NA ⁽¹⁾	1.7
	36"	NA (1)	174	0.5	0.5	NA ⁽¹⁾	2.2	NA ⁽¹⁾	2.1
9,001 to 9,500 sf ⁽²⁾	48"	NA ⁽¹⁾	94	0.5	0.5	NA ⁽¹⁾	2.9	NA ⁽¹⁾	2.0
	60"	NA ⁽¹⁾	58	0.5	0.5	NA ⁽¹⁾	3.7	NA ⁽¹⁾	1.7

Notes:

• Minimum Requirement #7 (Flow Control) is required when the 100-year flow frequency causes a 0.15 cubic feet per second increase (when modeled in WWHM with a 15-minute timestep). Breakpoints shown in this table are based on a flat slope (0-5%). The 100-year flow frequency will need to be evaluated on a site-specific basis for projects on moderate (5-15%) or steep (> 15%) slopes.

- Soil type to be determined by geotechnical analysis or soil map.
- Sizing includes a Volume Correction Factor of 120%.
- Upper bound contributing area used for sizing.
- ⁽¹⁾ On Type B soils, new plus replaced impervious surface areas exceeding 8,500 sf trigger Minimum Requirement #7 (Flow Control)
- ⁽²⁾ On Type C soils, new plus replaced impervious surface areas exceeding 9,500 sf trigger Minimum Requirement #7 (Flow Control)
- ⁽³⁾ Minimum orifice diameter = 0.5 inches
- in = inch
- ft = feet
- sf = square feet

Basis of Sizing Assumptions:

Sized per MR#5 in the Stormwater Management Manual for Puget Sound Basin (1992 Ecology Manual) SBUH, Type 1A, 24-hour hydrograph 2-year, 24-hour storm = 2 in; 10-year, 24-hour storm = 3 in; 100-year, 24-hour storm = 4 in Predeveloped = second growth forest (CN = 72 for Type B soils, CN = 81 for Type C soils) Developed = impervious (CN = 98) 0.5 foot of sediment storage in detention pipe Overland slope = 5%

	Ferv IC Imperv Civ	
Select Rainfall Tune:		
Hydrograph Method: Hyd Interval (min): Peak Factor: Tp Factor:	SCS Method 10 484 4	Summary Data: Perv TC: 0.00 min Imperv TC: 5.00 min Area: 0.1150 ac

	. on Impervicit compare	e Design Event
escription:	Area (ac) CN	Add
Description:	SubArea CN	Update
None Entered	0.1150 98.00	Delete
s Coeff: Total :	0.1150 ac 98.00	

Select Hist	ory File Commands1	Ado	/Remove Conduit Defaults
Hyd Options	Default Labels	Extran Run Cont	rol Program Configuratio
- Project Precip	itation Values		Display Units
	Descrip	Precip (in)	U.S. Customary Units
Precip 1	2 hr	2	S.I. Metric Units
Precip 2	10 hr	3	÷
Precip 3	100 yr	4	
Precip 4	1		
Precip 5			
Precip 6	1		
Heading 1: Heading 2: Heading 3:			
Heading 2: Heading 3:			

Node ID: 42	" PIPE	•	New Node	Node Type	
Descrip: 42	" PIPE			C Mh/CB/	Inlet
Invest El #1: 25	4.83	Crown El A	1. 259 22	🔿 Vault	
inveit 🗅 (it), [55	4.05	Clown D (ii		C Trap Por	nd
Contrib Area:		•	Clear	Undg Pip	be
Contrib Hyd:			Clear	O Stg-Sto	
North (ft):	h	East 0	·	C RLPool	
Increm (ft):	0.1		1	C Ellines D	n
	0.1	-		C Dummy 1	ipe Node
- Extran outpu	t option:				
Print Ex	tran Head				
Plot Ext	ran Head				

Length (ft):	65	Up Node	•	Clear Node
Diam (ft):	3.5	Dn Node	•	Clear Node
Slope (%):	0	Num of pipes: 1		
	(Note: Vol de	oesn't include Up or Dn Node	s!)	

Discharge ID:	REST 42"	-	New Control	
Descrip:	Multiple Orifice			
Outlet Inv (ft):	355.33	Select Control Type	r	
Max El (ft):	358.33	C BWeir	C RWeir	
Increment (ft):	0.1	C Combo	◯ VOrif	
		C Culvert	⊂ VWeir	
		MOrifice	Infiltration	
		C Riser	C Stg-Disch	
		Treat as seconda	nu discharda sinuciura	
			ng aleonalgo ensistensi	

Discharge Data Multiple Orifice			
Orif Coeff:	0.62	Lowest Orif Elev (ft):	355.33
Lowest Diam (in): Dist:Outlet to 2nd (ft): 2nd Diam (in):	0.5 2.5 1.5	Dist:3rd to 4th (ft): 4th Diam (in): Dist:4th to 5th (ft):	0 0 0
Dist:2nd to 3rd (ft): 3rd Diam (in):	0 0	5th Diam (in):	0

BL42"	New Node	Node Type
Node ID: 110 12		C Mb/CR/Inlet
	Section Products	C Vault
Start El (ft):]95.83	Max El (ft); [101.03	C Trap Pond
Contrib Area:	↓ Clear	🔿 Undg Pipe
Contrib Hvd:	▼ Clear	C Stg-Sto
Noth #):		RLPool
Increm (ft): 0 1		C Pipe Arch
10.1		C Dummy Node
Extran output option:		
Print Extran Head		
1 THUE EXIGN HEAD		

Storage ID	1 42" PIPE
Summary Values	
Design Event:	
Inflow Hyd:	0.00 cfs; 0.00 cf - 0.0000 acft
Out Hyd:	0.00 cfs; 0.00 cf - 0.0000 acft
Detention Vol:	0.00 cf - 0.0000 acft
Peak Stage:	0.0000 ft

SRC Status SRC Status SRC DV3 DV3 DV3 DV3 DV4 DV3 DV4 DV3 DV4 DV3 DV4 DV3 DV4 DV4 DV3 DV4 DV4 DV3 DV4 DV4 DV3 R5 Recharge DV4 DV3 DV5 DV4 DV4 DV3 DV4 DV4 DV4 DV3 DV4 DV4 DV4 DV10 DV4 DV10 DV4 DV10 DV4 DV10 DV4 DV10 DV4 DV10 DV4 DV4 DV4 DV0 DV4 DV0 DV4 DV0 DV4 DV0 DV4 DV4 DV4 DV4 DV4 DV4 REST MachQ=Peal-Ou107 dt-Peal-Ou20 Out dt-Peal	File Edit View Data Help	
SARC-2020 Bains DV3 Dv4 Dv3 Dv3 Dv3 Dv4 Dv3 Dv4 Dv3 Dv4 Dv4 Dv4 Dv3 Dv4 Dv4 </th <th></th> <th></th>		
SARC-2022 Pond detsign ✓ Basins Level Pool Node Instruction Set: IL42" Starting Stage: 354.83 It ✓ DV18 Dv18 Dv18 Design Event Matching Hyd % of Rate Inflow Hyd Dut Hyd Dv18 Dv24 Dv1 Dv19 Disting Event Matching Hyd % of Rate Inflow Hyd Dut Hyd Dv24 Dv1 Dv19 Dv10 V Ut Hyd Dut Hyd Dut Hyd Dv24 Dv2 V ID0 Dv Ut Hyd Dut Hyd Dut Hyd Dut Hyd Dut Hyd Dv24 Dv19 Dv0 Dv10 V Ut Hyd Dut Hyd Du	X + I B = X P P V	
Image: Series Image: Series Image: Series	SARC-2202	Pond design
	SARC-2202 Basins DV DV DV DV3 EX PROTOTYPE FX PROTOTYPE REST REST 42" RISER Hydrographs Layouts Discharge OUNITLED REST PROTOTYPE REST REST 42" RISER Hydrographs Dunitled PROTOTYPE PROTOTYPE REST	Pend design X Level Pool Node Instruction Set: FL42" Stating Stage: 354.83 R Design Event: Matching Hyd X of Rate Inflow Hyd Out Hyd Out Hyd 2 hr V OV 100 DV QUTY Cear MatchQ=PeakQ=0.0507 drs Peak Out Q: 0.0767 drs. Peak Stg; 356.61 ft - Active Vol: 518.95 dr - Pipe length: 65.00 ft 100 hr V QUTY10 Clear MatchQ=PeakQ=0.0778 drs. Peak Stg; 357.96 ft - Active Vol: 542.09 dr - Pipe length: 65.00 ft 100 yr QV QUT100 Clear MatchQ=PeakQ=0.0147 drs. Peak Stg; 357.96 ft - Active Vol: 542.09 dr - Pipe length: 65.00 ft QUT100 Clear MatchQ=PeakQ=0.0147 drs. Peak Stg; 357.96 ft - Active Vol: 548.89 dr - Pipe length: 65.00 ft QUT100 Clear Create Report Macro Edit Storage Edit Control Compute Stend detailed routing to history: Size Qutlet Cloar Cloar

For Help, press F1

Inde Data Undg Pipe		
Node ID: 48" PIPE Descrip: 48" PIPE Invert El (ft): 354.83 Contrib Area: Contrib Hyd: North (ft): 0 Increm (ft): 0.1 Extran output option: Contrib Hyd: 0.1	 ✓ New Node Crown El (ft): 357.83 ✓ Clear ✓ Clear East 0 	Node Type Mh/CB/Inlet Vault Trap Pond Undg Pipe Stg-Sto RLPool Pipe Arch Ellipse Pipe Dummy Node
Print Extran Head		

vode Data Ond	ig ripe			
Length (ft):	49	Up Node	•	Clear Node
Diam (ft):	4	Dn Node	-	Clear Node
Slope (%):	0	Num of pipes: 1		
Volume:	615.7522 cf	, 0.0141 acft		
	(IVOTE: VOI O	oesn't include Up or Dn Node	s!)	

Discharge Data Multiple Orifice			
Discharge ID: REST 48"	•	New Control	
Descrip: Multiple Orifice			
Outlet Inv (ft): 355.33		e	- - 112
Max El (ft): 358.83	O BWeir	C RWeir	
Increment (ft): 0.1	C Combo	C VOrif	
	O Culvert	C VWeir	
	MOrifice	C Infiltration	
	O OWeir	C Stg-Disch	
	· _ / 1351	s i unp	-0
	Treat an second	laru disekarde simeiture	
		1 2 1	

Discharge Data Multiple Orifice			·* //
Onf Coeff:	0.62	Lowest Orif Elev (ft):	355.33
Lowest Diam (in):	0.5	Dist:3rd to 4th (ft):	0
Dist:Outlet to 2nd (ft):	2.9		0
2nd Diam (in):	1.5	 Dist:4th to 5th (ft):	0
Dist:2nd to 3rd (ft):	0		0
3rd Diam (in):	0		
	OK	Cancel	Anniu Heir

Node ID: RL48" Descrip: PIPE Start El (ft): 354.83 Contrib Area: Contrib Hyd: North (ft): 0 Increm (ft): 0.1	 ✓ New Node Max El (ft): 358.33 ✓ Clear ✓ Clear East 0 	Node Type Mh/CB/Inlet Vault Trap Pond Undg Pipe Stg-Sto RLPool Pipe Arch Ellipse Pipe Dummy Node
Print Extran Head		

For Help, press F1

Storage ID	48" PIPE	•	Discharge ID	REST 48"	•
- Summary Values:			a sa		
Design Event:					
Inflow Hyd:					
Out Hyd:					
Detention Vol:					
Peak Stage:					

